# CBCS Scheme

USN 15MR32

# Third Semester B.E. Degree Examination, June/July 2017 Material Science and Metallurgy

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

### Module-1

- a. Define Atomic packing factor. Calculate the atomic packing factor for BCC. (08 Marks)
  - b. Draw Stress strain diagram for a Brittle material and explain the salient point. (08 Marks)

#### OR

- 2 a. Explain the different types of surface imperfections, with neat sketches. (08 Marks)
  - b. Compare the engineering stress and strain with the true test and strain for the tensile test of a low earbon steel that has the following test value:

Load applied to specimen 75kN: Initial specimen diameter 12.5mm:

Diameter of specimen under 75kN 12mm.

(08 Marks)

#### Module-2

- 3 a. With the help of neat sketches, explain the different stages of ductile cup and cone fracture.
  - b. Derive an expression for critical resolves shear stress for slip in a single crystal structure.

(08 Marks)

#### OR

4 a. Distinguish between slip and twinning with neat sketches.

important Neto 11. On completing your answers, compulsority draw diagonal cross lines on the remaining Plank pages

(08 Marks)

b. With a neat diagram, explain R - R Moore rotating beam fatigue testing.

(08 Marks)

#### Module-3

5 a. State the Gibb's phase rule and explain with a sample example.

(08 Marks)

5. With neat sketches, explain different types of cast metal structure.

(08 Marks)

## OR

- what is Sölid solution? Explain the Hume—Rothary rules for the formation of substitutional solid solution with example. (06 Marks)
  - b. Construct the Ag Cu phase diagram using following data:

Melting point of  $\Delta g = 960.5^{\circ}C$ : Melting point of  $Cu = 1085^{\circ}C$ :

Eutectic point 779.4°C: Eutectic composition 28.1% cu maximum solubility of Ag in Cu and Cu in Åg is 2%. (10 Marks)

Assume the liquids , solids and solvers line are straight. Calculate

- (i) Amount of cuteetic in 20% Cu. 80% Ag alloy at 700 °C and
- ii) Perfentage and epimpositions of solid phases in 60% Cu and 40% Ag alloy at 400°C.

# Module-4

7 a. Draw the iron—earbon diagram and label all the parts.

(08 Marks)

b. Mention the types of heat treatment processes. Explain with a suitable sketch the full Normalising process. (08 Marks)

Lof?

|   |     | OR                                                                                                          |                  |
|---|-----|-------------------------------------------------------------------------------------------------------------|------------------|
| 8 | a.  | Draw the TTT diagram for cutectoid steel and explain the different microstruc                               | ctures obtain at |
|   |     | various cooling rates.                                                                                      | (10 Marks)       |
|   | b.  | Explain Induction hardening with a sketch.                                                                  | (06 Marks)       |
|   |     | Module-5                                                                                                    |                  |
| 9 | a.  | Explain the Composition . Properties and Application of                                                     |                  |
|   |     | i) $\Lambda(-2n - ii) \Lambda(-Si.$                                                                         | (08 Marks)       |
|   | b.  | Define Composite. Give brief classification of composites.                                                  | (08 Marks)       |
|   |     | OR                                                                                                          |                  |
| Λ |     | ** ***                                                                                                      | (06 Marks)       |
| U |     | Write a note on Grey east iron and Titanium alloy.                                                          | (OU MATES)       |
|   | IJ. | Explain with sketches, method of production of FRP's.  i) Pultrusion process. ii) Filament winding process. | (10 Marks)       |
|   |     | A PLUTHSION PROCESS III CERHICHI WHIGHIO DIOCCSS                                                            | CIU MATES        |

\*\*\*